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I.  Objective 

 The objective of this project is to describe a relevant engineering system modeled by a 

system of nonlinear parabolic partial differential equations.  This description will require the 

solution of the system of equations using a numerical method.  Finally, meaningful engineering 

insight will be drawn from the transient and steady-state solution of the equations and their 

response to a sensitivity analysis of physical parameters and process variables. 

 

II.  Derivation of PDEs 

 

 A plug flow reactor (PFR) is a pipe.  Reactants are fed in one end of the pipe and some 

mixture of reactants and products emerge from the far end.  The concentration of species and the 

temperature inside the PFR can vary with time (t), axial position (z), radial position (r), and 

angular position ().  For the purposes of this derivation, we are going to assume that the 

variation in the radial and angular directions are negligible.  Therefore, the concentrations and 

temperatures are only functions of time and axial position.   

The equations that describe the behavior of a plug flow reactor are material and energy 

balances.  As material and energy balances, they have the functional form: 

 

 accumulation = in - out + generation       (1) 

 

We now write a differential mole balance on an arbitrary species A.  The units of this equation 

are moles/time.  The system over which the balance is performed is a cross-sectional disc with 

width z.  The volume of this differential volume is  

 

z
4

D
zAV

2

R
cross 


==         (2) 

 

where RD  is the diameter of the pipe. 

 

 
t

C
Vonaccumulati A




=         (3.a) 

 

Moles of A can enter the system by convection.   

 

  
zAcrossCvA convectionby  in =        (3.b) 

 

where v  is the bulk velocity in the axial direction at position z.  Moles of A can leave the system 

by convection.  

 

  
zzAcrossCvA convectionby  out

+
=        (3.c) 

 

Moles of A can enter the system by diffusion down a concentration gradient.   

 

  
zAcrossJAdiffusionby  in =         (3.d) 
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where AJ  is the molar flux of species A in the axial direction at position z.  Moles of A can leave 

the system by diffusion down a concentration gradient.   

 

  
zzAcrossJAdiffusionby  out

+
=        (3.e) 

 

Moles of A can be generated by a chemical reaction.   

 

 rateVgeneration A =         (3.f) 

 

where rate  is the rate of chemical reaction and A  is a stoichiometric coefficient for A in the 

reaction (negative for reactants and positive for products).   

 Next we combine terms (3.a) to (3.f) in a mass balance.  We divide by the differential 

volume and take the limit as z  goes to zero.  This yields 

 

         rateVJAJACvACvA
t

C
V AzzAcrosszAcrosszzAcrosszAcross

A +−+−=





++
 

 

( ) ( )
rate

z
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
−




−=




       (4) 

 

Fick’s law of diffusion relates the molar flux, AJ , to the concentration gradient 

 

z

C
DJ A

A



−=           (5) 

 

The rate of the reaction for an elementary irreversible reaction of the form: 

 

 DCBA DCBA +→+         (6) 

 

is 

 

 BA

BAfforward CCkrate


=         (7) 

 

where the rate constant, k, is generally given as 

 

 RT

E

f,of

f,a

ekk
−

=           (8) 

 

where R is the gas constant, T is the temperature, Ea,f is the activation energy, and ko,f is the 

exponential prefactor.  Remember, the rate has units of [moles/volume/time] so  ko,f has variable 

units depending upon the stoichiometry of the reaction. 

 If the reaction is irreversible, then we can write the reverse rate as   
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 DC

DCrreverse CCkrate


=         (9) 

 

 Substituting Fick’s law and the forward and reverse rates into the material balance, we 

have 
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If the velocity and the diffusivity are assumed constant with respect to Temperature and 

concentration, then equation (10) can be simplified to give: 
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Equations of this form can be written for every species in the reactor.  For a non-reactive solvent 

species, the balance simplifies to 

  

 
( )

2

S

2

SS

z

C
D

z

C
v

t

C




+




−=




        (12) 

 

 The energy balance for a plug flow reactor can be derived in an analogous manner.  We 

again perform a balance over a differential element.  However before we begin we are going to 

make a few assumptions about our system.  The molar enthalpy of our system,H
~

, is an ideal 

enthalpy defined as 

 

 )TT(CxH
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energy
     (13.a) 

 

where refT  is a thermodynamic reference temperature.  (If you choose it to be 0 K, it disappears 

from the equation.)  The heat capacity of species i is i,pC .  This is the pure component enthalpies 

weighted by mole fraction, ix .  Of course, it is inconvenient to use mole fractions, since we are 

working in concentrations.  But the mole fraction can be obtained from 
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         (14) 

 

where TC  is the total molar concentration.  TC  is not necessarily constant but it frequently is 

assumed to be so.  It turns out that we are going to want the enthalpy per volume, so we need to 
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convert the molar enthalpy to a volumetric enthalpy.  This is done by multiplying by TC .  This 

gives a volumetric enthalpy of  

 

)TT(CCH ref

n

1i

i,pi

c

−=
=

  








volume

energy
       (13.b) 

 

 Heat enters our differential volume in the same ways that mass does—namely by 

convection and diffusion.  We will have analogous terms in our energy balance for these 

phenomena.  The diffusion term will rely on Fourier’s law rather than Fick’s law to relate the 

heat flux to the temperature gradient, with the proportionality constant being, ck , the thermal 

conductivity.   

 

z

T
kq c




−=           (15) 

 

Also, heat can be generated or consumed by reaction.  The molar heat of reaction is related to the 

activation energies as follows 

 

 r,af,ar EEH −=          (16) 

 

Heat can also be lost through the reactor walls due to poor insulation or intentional cooling.  

Generally this heat loss has the form: 

 

 )TT(hAQ surrsurf −=          (17) 

 

where surfA  is the surface area, h  is the heat transfer coefficient, and surrT  is the temperature of 

the surroundings. 

Thus we can write an energy balance as 
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           (18) 

where we have already divided by the reactor volume and taken the limit as z  approaches zero. 

The units of equation (18) (and thus the units of every term in this equation) are 

energy/volume/time.  Now we need to substitute equation (13.b) in for the enthalpy so that we 

obtain a PDE which is given in terms of the temperature.  In the following analysis we assume 

that the heat capacities are not functions of temperature. 
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Similarly, the spatial derivative of the enthalpy can be obtained. 
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Substituting equation (19) and (20) into equation (18) and rearranging for 
t

T




 yields 
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Thus we have our very wonderful energy balance.  It happens to be a function of the temporal 

derivatives of the concentrations but as long as, at each step of the Runge-Kutta process, we 

solve the mass balance equations first, we will have the values needed to substitute into equation 

(21). 
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III.  Problem Specifications 

 

stoichiometry 

 

 1A −=  1B −=  1C =   0D =  

 

Boundary conditions at entrance. (at z = 0) 

 

 0.1C 1,A =       [moles/liter] 

 0.2C 1,B =       [moles/liter] 

 0.0C 1,C =       [moles/liter] 

 1,C1,B1,AT1,S CCCCC −−−=     [moles/liter] 

 0.300T1 =      [K] 

 

Boundary conditions at exit. (at z = L) 

 

 0.0
x

T

x

C

x

C

x

C

x

C SCBA =



=




=




=




=




  

 

Initial conditions inside reactor 

 

 0.0CCC o,Co,Bo,A ===  

To,S CC =  

 0.300To =  

  
 

parameters: 

 
18

1000
CT =       [moles/liter] (total concentration) 

 01.0DR =        [m] 

 2.0L =        [m] 

 
7100.1D −=       [m2/sec] 

 0.5000k f,o =      [l/mol/sec] 

 0.5000k r,o =      [1/sec] 

 
4

f,a 104E =      [Joules/mole] 

 
4

r,a 108E =      [Joules/mole] 

 314.8R =       [J/mole/K] 

 
4

c 100.2k −=      [J/m/K/sec] 

 
4100.2h −=       [J/m2/K/sec] 

 0180.0MW =      [kg/mol] 

 0.4184C water,p =      [J/kg/K] 



D. Keffer, ChE 505 ,University of Tennessee, Fall, 2000 

 7 

 water,pA,p C2.1C =      [J/kg/K] 

 water,pB,p C3.1C =      [J/kg/K] 

 water,pC,p C5.1C =      [J/kg/K] 

 water,pS,p C0.1C =      [J/kg/K] 

 273Tsurr =       [K] 

 5000=       [sec] (residence time) 

 


=
L

v        [m/sec] (velocity) 

 LDA Rsurf =       [m2] (surface area) 

 L
4

D
V

2

R=       [m3] (reactor volume) 
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IV.  Numerical Considerations 

 

 You will need to employ a numerical method capable of solving a system of coupled, 

nonlinear, parabolic partial differential equations with Dirichlet and Neumann boundary 

conditions. 

 The code syspde_para.m with the input file syspde_para_input.m are capable of 

performing this task.  You will need to modify the initial conditions, boundary conditions, PDEs, 

and parameters to suit your particular problem. 
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V.  Assignment 

 

Task One. 

 For the parameters given above, solve the system of five PDEs.  Use 20 spatial nodes and 

1000 temporal nodes spanning from to = 0 to tf = 10,000 sec.   Check that you have the code 

working properly by examining the profiles of the concentrations and the temperatures at 10,000 

sec.  They should look something like the following graph, where black = A, red = B, blue = C, 

green = S, and magenta = T.  In this plot, the concentrations of A, B, and S and the temperature 

have been normalized by their input values at z=0.  The concentration of C has been normalized 

by the input value of the limiting reagent, A. 
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Task Two. 

 

Select one of the physical parameters,  

 

 D , f,ok , r,ok , f,aE , r,aE , ck , pC , TC , h , or reaction stoichiometry 

 

Investigate how the reactor behavior changes as you change the variable.  Discuss differences in 

both transient and steady-state behavior.  Submit a plot which has on the x-axis the variable you 

are changing and on the y-axis the steady-state temperature and conversion.  (Remember: 

 

  

 
in,A

out,Ain,A

C

)statesteady t(CC
conversion

=−
=  

 

where A is the limiting reactant.)  Vary the physical parameter over a range so that the effect of 

the parameter is visible from the graphs.   

 If the effect of the physical parameter is not visible given the other base case parameters, 

you may change those parameters.  For example, if the effect of changing the diffusivity is not 

visible because the reactor is dominated by convection, you may lower the velocity, in order to 

observe the effect of diffusivity.  However, maintain this lower value of velocity in all of your 

cases so that the data points in the plots for this task have everything held constant except the 

parameter you are varying. 
    

Task Three. 

 

Select one of the process variables,  

 

 inT , in,AC , L , surrT , RD , v  

 

Investigate how the reactor behavior changes as you change the variable.  Discuss differences in 

both transient and steady-state behavior.  Submit a plot which has on the x-axis the variable you 

are changing and on the y-axis the steady-state temperature and conversion.  Vary the process 

variable over a range so that the effect of the variable is visible from the graphs.   

 
    

 

 


